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Abstract

This paper introduces five new identities involving eighth-order mock theta func-
tions, expressed in terms of multivariable Z-functions. These identities are de-
rived using the well-known g,-product identities in conjunction with the classi-
cal Jacobi triple product identity. The results establish profound links between
theta function representations and combinatorial partition theory. Specifically,
we present key findings that offer structural insight into mock theta function iden-
tities, using multivariate Z-functions and partition theory. These discoveries un-
cover new patterns and identities within the framework of mock theta functions,
with a particular focus on their multivariable structure and their connections to
partition theory. In addition, we concisely summarize recent advancements in
the field and discuss potential applications. The findings emphasize a significant
relationship between our results and partition-theoretic identities.
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1. INTRODUCTION AND DEFINITIONS

In this paper, we adopt the standard notation: N, Z, and C represent the sets of natural numbers,
integers, and complex numbers, respectively. We also define

No:=NuU{0} ={0,1,2,...}.

To express the content clearly and uniquely, g, has been used in place of q.
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We adopt the conventional ¢,-series notation, consistent with the conventions outlined in
(17, 18].
The g,-shifted factorial (a;q,)n is defined for |g,| < 1 in the following manner:

1 if n =0,
1.1 Cq)n = nl
(1.1) (a;0.) H(l—aqf) ifneN.
k=0

Let a,q, € C, and assume, unless explicitly mentioned, that a is not equal to g, ™ for any
m € Ny. The infinite g,-shifted factorial is defined as follows:

(1.2) (@:¢)00 = [[(A = agf) =[]0 = agf™), (a,q. € C;la| <1).
k=0 k=1

Observe that the infinite product in equation (1.2) does not converge when a # 0 and |g,| > 1.
Thus, throughout this paper, whenever the expression (a; g, ) appears, it is implicitly assumed
that |¢,| < 1.

We adopt the following notational conventions throughout:

(1.3) (a1,a2, ... am; ¢ )n = (a1;0,)n(a2; @ )n -+ (@m; @ )n,
(1.4) (a1,a2,. .., Gm; q)oo = (@15 G )00 (A25 @)oo -+ * (@i G )oo-

The general theta function f(a,b) was introduced by Ramanujan [15, 14] and is defined in the
following manner [5, 20]:

flab) =1+ ()™ (a" +b")

n=1

oo
(1.5) = 3 T = f(ba),  (lab| < 1).

n=—oo

It can be deduced from equation (1.5) that

n(n+1) n(n—1)
2 2

(1.6) fla,b) =a f(a(ab)”,b(ab)™™) = f(b,a), (ne€Z).

In addition, Ramanujan rediscovered Jacobi’s celebrated triple product identity, which he ex-
pressed in the following form [5, 7, 20]:

(1.7) f(a,b) = (—a;ab) oo (—b; ab) s (ab; ab) .

Alternatively, using the notation in [12], it may be expressed as:

e 5 0 9 on1 q2n71
> arte =Tl s (145 )
1

ol
q

(1.8) :(ﬁwﬂmb%mmﬁw(—iwﬂ . (ol <Lz #£0).
z %)

Remark 1.1. Equation (1.6) is valid only when n € Z. If n is not an integer, the formula gives
only an approximate value. For a detailed explanation, see [15].

n=—oo
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Remark 1.2. The identity of g,-series given in equation (1.7) (or its equivalent form above) was
originally discovered by Carl Friedrich Gauss in the early 19** century.

Many significant identities from the g,-series are derived naturally from the Jacobi triple
product identity given in (1.7). Notable examples include [5]:

o0 o0
Sooat=1+2) g
n=1

n=—oo

(1'9) { QquL

V(@ D)o = (=45 47)oo(475 47 )oo
© (25 8%)oo(— 425 ¢%) o

Another classical identity is given by

n(n+1) qL 0 )
.10 = Q. q, L 2 o
(1.10) ¥(q) = f(aq;) E q = e

Additionally, we have

n(3n—1)
f(=q) = fl=a,—a)) = > ("¢ *
n=-—o00
e n(3n—1) n(3n+1)
- S
n=0 n=1
(111) = (QL§ QL)oo

Euler’s Pentagonal Number Theorem is expressed in equation (1.11). Interestingly, the identity
below provides its equivalent in analytic form:

(112) (~a:0) : :
: —05 Q)0 = =
T (456 x(—0)]
where x(g,) denotes a modular character function. This formulation provides the analytic rep-
resentation of Euler’s classical result [2, 4].

Theorem 1 (Euler’s Pentagonal Number Theorem). For every natural number n, the
number of partitions of n into distinct integers, denoted by D(n), is precisely the same as the
number of partitions of n into odd integers, represented by O(n); in other words, D(n) = O(n).

We now introduce the continued Rogers—Ramanujan fraction %(q,), defined as

1 H(q,) _ L f(—q,—q}) _ g (0060 ) oo (4 47 ) o
- L - L
G(q.) f(= qu—qL) (9% 07)o0 (433 47 ) oo
1 .
@ o ¢ @
1.13 =L 2 4 4 1).
(1.13) 14+ 1+ 1+ 1+ (o} <1)

The functions G(g,) and H(g,), fundamental to the structure of identities similar to those of
Rogers—Ramanujan, are introduced with the following definitions:

‘%(qL) =q’

(1.14)

i f-a) 1 _ (0507)o0(5 07) oo (473 4)) oo
"0 QUQL n f(ffbquzl) (quLs)oo(qil;q?)oo (qd(h)oo
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(1.15)
0  nin+) —g° 1 L5 (h 5 5.5
H(qL) — 2 : qv _ f( q/,) _ (quqL) (q“qL) (qL,qL) .

=) fa2 ) (aF90)o(dF a0) oo (43 0)o0

The functions f(a,b) and f(—g¢,) that appear in preceding identities are defined in (1.5) and
(1.11), respectively.

For further historical context and recent advancements related to the continued
Rogers—Ramanujan fraction (1.13) and associated identities (1.14) and (1.15), along with related
identities (1.14) and (1.15), one can consult the seminal reference [5]. Subsequent developments
in 7, 19, 17]. Additional results on continued fractions are discussed in [6] and the references
therein.

Theorem 2. For |g,| < 1, the following continued fraction identity holds:

(€2 )= )oe = @16 1 a al-q) @@ ¢0-¢) @@ ¢1-q)
L) 4L /o0 yLj00 (qb;qg)oo 1- 1+ 1— 1+ 1— 1+ 1-
1
(1.16) = ,
@
1_
14 QL(l_QL)
L a
- g;(1—q7)
e
- g (1-q)
1_
(@3 @)@ a)o _ 1 a4 @ @ 4 @ af
(@23 02)o0 (@35 @P)o0 14 14 1+ 14+ 14 1+ 1+
1
(1.17) = ,
@
1+ =
L
1+ p
L
1+ "
L
1+ p-
1+ —
q
1+
1+
and
C(q)_(Q?;q?)oo(Q?;qf)m_ o ¢ ¢ 4 @ &
) =

(0 @0)oo (@} aP)o0 1+ 1+ 1+ 1+ 1+ 1+
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(1.18) =1+

1+

In his 2015 work, Andrews [1] introduced novel double-sum hypergeometric g,-series repre-
sentations for various partition families, highlighting the significance of double-series techniques
in combinatorial partition identities. He proposed the generalized family Z(k,l,s,t,p,q,), pre-
senting three special cases through multivariate Z-functions. Follow-up studies have extended
these results, providing new generalizations in the domain of partition theory (see [7], [16], [21]).
A particularly noteworthy contribution in this direction is Hahn’s recent work [10].

This paper focuses on deriving two new identities that illuminate fundamental relationships
among the functions Za, %z, and %,, while also establishing their connections with ¢,-product
identities.

o n
(1'19) %(kj? l,s,t,p, QL) = Z qf(2)+ln%(57 t,p,q.; n)7
n=0
where
[%] . qtp(é)-s-(qb—st)j
(1.20) r(s,t,p,q,;n) = (—1)’ L .
' Jz:; (qL; QL)nftj(QfE pr)j

Interested readers can refer to [20] for further details. We also recall some interesting special
cases of the function defined in (1.19).
If Z(k,l,s,t,p,q,) is defined by the Z-function, then:

(1.21) #(2,1,1,1,2,2) = (=45 ¢ )oo-
It Z(k,l,s,t,p,q,) is defined by the Z-function as in equation (1.19), then:
(1.22) £(2,2,1,1,2,2) = (=45} )oo-

Furthermore, if Z(k,1,s,t,p,q,) is defined by the Z-function in equation (1.19), we obtain:

(™ 7™ ) oo
(@™ ¢2™)oo

Recently, Srivastva [19] introduced the following notations:

Ko = R(2,1,1,1,2,2), Bp=R(2,2,1,1,2,2), B = Z(m,m,1,1,1,2), m=1,2,3,....

(1.23) Z(m,m,1,1,1,2) =

2. A SET OF LEMMAS

This section focuses on reviewing particular dissection formulas associated with eta-function
quotients. The fundamental outcomes of this study rely on these formulas:

Lemma 2.1. We have the following 4-dissections:
U3 _ Us UsUg UgUSUT

21) U0 T U7

N
*USUy

+ 64> +12¢
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The proof of equation (2.1) was provided by P. C. Toh [22].

Lemma 2.2. We have the following 2-dissections:

U2 UsUZ U?
(22) T = Gt T T

1 3U1g 9

This dissection has been proven and discussed by several prominent mathematicians, including
S. Cooper [8], G. E. Andrews and B. C. Berndt [3], and D. Hickerson [11].

Lemma 2.3. We have the following 2-dissections:

1 Ug U3U%
2.3 — = == + 2,0,
(23) 02~ muz s,

1 Ut U2U4
2.4 — = th
( ) U{l U 4U4 + U210

The proofs of equations (2.3) and (2.4) were introduced by Xia and Yao [23], providing novel
approaches.

Lemma 2.4. We have the following 3-dissection:

Vs ULUS vgU3 v3ud
(2.5) 2= 00 0,200 442208
Ul U3U18 U3 U3

Bruce C. Berndt discussed this dissection [5] in his work on Ramanujan’s notebooks. His
book examines many results from Ramanujan’s work, including similar dissections related to
theta functions.

We now use some pre-proven results to derive the desired outcomes:

UbUE U UM U Uz L, UBUS LUBUM
2.6) 16 32 = 48 448 1280¢ 1024 .
(26) 16753 T 3279z = Brogop T gpErz T 10y gpe TG g
ULUS UL UIU2
20 47502 :4U2U1°U6 1007
UELUA? U4 U41U16 UZ U87 2U4 U8U16
2.8) 4 —4 84, 164, 32¢ .
(28 dgsmz = ‘opueo, TS upor gz T g
USU2 U UsUS
2.9) 8-2-8 =38 32¢, —5o.
(29) 8550, UU8U2+ NIz
(2.10)
14U7 U6 SUG 14U7 U14 SU U2 4U7 4
108U218 3 +324q, QUf4 6 —108 ?j 22+ 324g 7410@; 8 +4 32qL74U120 32U8
USU2 U] UAURUS UOUSU U032

Proof of 2.6. Followed by [9], we can write it as:

o0

ubu2 /1\? UUMN (12
V(16n + 14)¢" = 16—2 8(—) + 3224 (—)
2V Jar =167 s \ o 0,02 \ 07

Putting the values of ( ) from equation (2.4), we get the equation (2.6). O

Proof of 2.7. Followed by [9], for n > 0, we have

(2.11) iv(8”+2)q7 =4 (%Z:) <U1>

Putting the values of ( ) from equation (2.4), we get the equation (2.7). O
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Proof of 2.8. From [9], we can write it as:

(2.12) S V(8 + 2 = 4 (Uggf) (Ui%) (UL{J .

n=0

Putting the values of (UZ) and (%) from equation (2.3) and (2.4), we get
1

[e o]
Usu; U2 U2U% Ui U3U
2.13 V(8 Ng" = 2¥4 8 2L416 4 4L48 )
@i vensa = () (g + ) (opiog + 0
Simplify the right side of above equation to get the equation (2.8). O

Proof of 2.9. Followed by [9], we can write it as:

[e o]
Usuz 1
(2.14) Z V(8n+6)g" =8 <U12U4 )
n=0
Putting the values of (#) from equation (2.4) in the above equation, we get the equation
1
(2.9). O

Proof of 2.10. Followed by [9], we can write it as:

oo 3 < 3
U3*U3 USUSUS\ (1
(2.15) Z V(24n +19)¢]" = 108(U1 2 U4 8240 =0 )\ 7 )
n=0
Putting the values of ( ) from equation (2.4), we get the equation (2.10). O

3. A SET OoF MAIN RESULTS

Theorem 3.1.
% 7% % 3@ 5 % 17 13
16[ A]GD} +32[ A) [63} _ 48 6[ 5] , ,+448qL#
(2;9)%%ZB (4;9.)%Z%D (95 9.)8.[ZA?|Z%D]> (03 0.)8[Z A %D
(%5)°[%p]? s [%8)°|%D)"
3.1 + 12802 — " 4+ 1024¢° —————=—
(3-1) 0 0 )8 AT APPSR NS
Proof. Converting the equation (2.6) in ¢,-pochhammer symbols:
16495 ) (05 )3 | 50 (475 07)o0(4)56)50 _ (a5 93
(qhqb) (quqL )oo (QMQL) (qqu )oo (QMQL) (qbqu) (quqL)oo
4.  4\27 14
(32) 448% (qqu )oo 2 + 1280(]2 (qqu) (qL7ql,) +1024 3(qL7qL) (quqb)oo
(@03 @)oo (@25 )2 (a8: aB)2 (@ @)oo (@25 42) 52 (@ @)@ ?)53
Equation (3.2) can be written as:
oL (@ a)os (45005 (23 7) oo 1 (g0 (656D o(at; a2
(29)% (@30)% (@)oo (@ ah)% (@ 0% (4% a®)% (@)%
1 (4545 (a5 ah)38 4 448g (45428 (454
L
(@3 qL)oo(q?;q?)ég (Q§;q?)éo (quqb)oi (qb;qb)oo(q?;QE)éo (g% 2% (a8 a8)%

T2 (@50) (q“qL)oo 462 ) (qL;qL)oo(q“qL)oé




564

Arooj Fatima, Ahmer Ali, Serkan Araci and Bilal Khan

By using equation (1.23)(with m = 1,2,3,4,8)

2. .2 2. .2 2. .2
(3.4) %A :%(1’17171, 172) (qL’q;)OO,(q;?qE)OC (qL7qL)
(05030 (?1¢¥) 0 (€030) 0
(¢} 000 (a54}) (q}; 614)2
(35) %5 =#221,1,1,2) = (qL2 qi‘)w'(qz'qi‘)w (qL2 q;)oo
PRE TAVJe e R YAVl L)1y /00
(%5490 (a%505%)0e  (q8540)?
3.6 Re = R(3,3,1,1,1,2 R WESRS TR A L2300
(36) ( 2 N vy
8. .8 8. 8 8. ,8\2
(37) %D — %(4747 1’ 1’ 172) (qL ’ qL )OO (qL7qL)OC (q L)OO
(qL,qL) (¥ (@hah)
(ql_ 7qL )OO (QL 7QL ) (qL67qL )oo
(3.8) Ry = #(8,8,1,1,1,2) = ‘ =
(00%) 0 (6/%d %) (¢}

Thus, by applying (3.4), (3.5) and (3.7), we get:

1 1 1 1 (¢} ¢%)so(d)s q))
16 RN Bp—— + 32 — RAURLS
(qL;qL)EQ[ A P s (2;9.)% %p (@5 a.)3
1 1 ‘ 1
=48 |7 + 448q,[Z |
@t (@ DN G e s @ DT
210 1705 400 (@ )5 3., (@5 0)eo(d;aP)i
(3.9) + 128042 %5] + 10243 %5

(05 0)00 (75 )12 (95 0)00 (25 ?) 2

Again, by using (3.5) and (3.7), we obtain:

[Z4]" %D (4?5 42)S [%B])° [%5]" [%#5]"
16 132 — 48 + 448¢,
(9;90.)% %5 (2;9)8 (a5 0.)3.%p (03 0.)8[ZA)° [ ZD)° (@ a)%Z5P (%]
(3.10)
4 128042 (¢ 0))8. (28] [%D]? 1024435 (¢; 43, [%p]"

(95 90)00 (025 ¢2) 12 (05 9)o0 (%5 212

After that, we get:

Al %) o [P %5 5] [%5)"3
RN S PRP R ] PR R NI S LRt A PR TR U N
o [%8)°%p)? s [%8)°%D)"
(3.11) +1280q (QMQL) [’% ]5 +1024q (QMQL) [f%A]5

O

Theorem 3.2. If % %3 and X« are defined by Z-function equation (1.23). Then, the following
relation holds:

W28 (asa)s %) © 16q, B %D
(@:0.)%%p (03 0.)2.% 4| %D)3 “(@59.)3. 24

Proof. By using equation (2.7) and splitting the power of Uy :

(3.12)

U§U5:4 Uy +16qU47U§
UpUg - URU,UR UtUg’

4
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Converting the above equation in g,-pochhammer symbols.

(5 07)8. (a5 a5 (¢);0H)% (¢); 015 (a%5 aD)2%
3.13 4 —4 1 16¢,
(8.13) (2;0)%(a% ¥ (@ a)2% (6% a?) 88 a®)S, (@ 90)% (a3 42)S
(73 67)50(a53 4% (=05 @)oo _ (0 0)o0(93 02) oo (473 ) oo (qi‘;qf)oo+
(25 0)%(65 )20 (05 0) 20 (=2 0.)% (05 0.)2. (025 42)0(q%; ¢8) 2,
(3.14) 164, (¢h; a5 (a¥; ad)%

(2903 (¢7; a2)%
By using (3.4), (3.5) and (3.7), we get: Thus, by applying (3.4), (3.5) and (3.7), we get:

4[%/4}2[9?3}2(—% 0)2 4 (%Z5]®
(9 9.)%%Zp (903 9.)2. 24| ZD)?

(%5)' %D
(QL; qL)go%A ’

(315) + 16q,

O

Theorem 3.3. If %, %p and X are defined by Z-function equation (1.23). Then, the following
relation holds:

4[‘%A]2[%B]2(_qt;qt)go 4 (%)’ +8q (%8)°%E
(QHQL)go%D (QMqL)go[%AP%D%E L(qwqb) [‘%AP[%D]
[%5)° (%] s [#8]°%D
(16) X S Al T (g g )R AP

Proof. Converting the equation (2.8) in ¢,-pochhammer symbols:

4(q“qL) (434)% _, (4548 +8 (¢ ¢ 2 ()% ¢9)%
= @
(250)5%(0% )3 (0a)%(a? a2 8(a!% ¢/%)3 (a2 42)55(q%; a8) %
(¢} a7 (¥ ad)] 2 (@ )% (6 48) oo (61 ¢16)2
(3.17) 16 L L L L /o0 +32q L L L L L L OO.
“(¢202) 5 (1% ¢/9)% (g% ¢4
Equation (3.17) can be written as:
W(40502)5 (650D (65050 _ (a3 4))ee (434 IPCATE
(@590% (68:6%)2% (a0 0.)% (a2 @)% (03 0)2 (0% @)oo (415 ¢10)2 (g% )13
(2% 4.°)3% (45 /)0 1 4160, (0905 (@@ (6)54))o0(0: 45
8. 48 8. ,8)\2 Ly 2. .2\3 16. ,16)\2 2. 42\7
(@5 a)0 (%5085 (a2 07)3 (a5 aP)5 “ZED% @ a2 (Ed)L
318) + 322 2 (42545 (45400 (685 ¢8) oo (4% ¢/
( : + ( 2. ) ( 2. 2)7 :
L L qL7qL o0
By using (3.4), (3.5), (3.7) and (3.8), we get the desired results. O
Theorem 3.4.
(3.19) AV ) N
(a50.)3 (93 0.)2.%#a%D “(q:9.)3. %A

Proof. Converting the equation (2.9) in ¢,-pochhammer symbols:

(3.20) 8(q“qL) (@ 4)% _ g (a)54))% 4 30, (0 400 (45 00

(@50)%(0h Moo (050)3 (073 02)5 (0 47)3 (@5 4.)3 (475 47) 3%
By using (3.4), (3.5), (3.7) and (3.8), we get the desired results. O

565
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Theorem 3.5.

[ZA]" (¢35 ¢2)S [ZA)° (%) (02 48, (241 [%8]" (45 42)S

108 + 324q, X =108
(@ 0.) X %c 1 (a;0.)8 (90 9.) 3 %% | %D)?
7 3(,3. ,3\6 3 2 2(,.3. ,.,3\6
324% [%B] ['%C} (qL 5 4q, )oo + 432(]L [%A} ['%B] [%D] (qL ‘N )oo +

(0 0.) L% 1% %D)?
642 (%) (%) [%D) (42 4)S, '
‘ (qL; QL)éé%A

Proof. Convert (2.10) in g,-pochhammer symbols and employ the similar approach as in previous
theorems and then use (3.4), (3.5), (3.6) and (3.7) to get the desired result. O

(‘h? QL)})é%C

(3.21) 129

4. CONNECTIONS WITH COMBINATORIAL PARTITION-THEORETIC IDENTITIES

Recent advances in partition theory have revealed deep connections between g,-series identi-

ties and combinatorial partition functions, as demonstrated in [13, 24, 25]. These developments
often employ generating function techniques and combinatorial interpretations [10], building
bridges between previously distinct areas of partition theory.
Significant progress was made by Andrews [1], who related Schur’s, Gollnitz-Gordon, and
Gollnitz partitions through multivariate %Z-functions. This work was later extended by Sri-
vastava [19], who introduced refined versions %, %s and %y, of these functions. Building on
these foundations, we develop a new generalization of Z-functions using eighth-order mock theta
functions. Our approach yields:

e Novel identities connecting mock theta functions to partition theory
e Enhanced understanding of classical ¢,-series through combinatorial lenses
e New tools for analytic and combinatorial investigations of partitions

5. CONCLUSION

This study contributes to advances in recent studies by introducing a generalization of the

Z-function derived from eighth-order mock theta function identities. Using the extensive frame-
work of these functions, we derive significant results that further advance our understanding of
classical g,-series identities while uncovering previously unexplored connections in partition the-
ory.
Our findings give a novel perspective for examining the correlation between mock theta functions
and extended Z-functions. These contributions yield valuable tools and identities applicable to
both analytic and combinatorial approaches in partition theory, paving the way for further
investigations.
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